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STABILIZATION 

We examine certain questions related to the application of vector-valued Lia- 

punov functions to the solving of the stabilization problem for interconnected 
systems. We find the set of controls satisfying a damping criterion for the tran- 

sient responses. We show that the proposed construction of the vector-valued 

Liapunov function enables us to solve the problem posed under milder constraints 
imposed on the controls than the constraints which can be obtained by Bailey’s 

construction [ 11, We determine the properties of the control set obtained. Prom 
the set found we select the controls ensuring the stabilization of interconnected 

systems under inclomplete information of the characteristics of the executive 

devices. We show the optimality of the controls selected with respect to the 

vector-valued functionals. 

1. Stetsmsnt of the problem. We consider a collection of I smooth dy- 
namic systems whose perturbed motion in the region 

11 xi 11 < f-i, t >C (11 xi 11 2 = (xi, xij, ri = con&, ri > 0) (1.1) 

is described by the differential equations 

Here zi is the vector of the variables with respect to which the i th system is stabilized, 
Xi E Rni, F, and ci is a vector-valued function and a matrix, defined and continu- 

ous in (1.1) together with their partial derivatives in xi and t, ui is the control vector, 

tl,i E Rmi, Hij is a matrix ch~acterizing the infhtence of the jth system on the be- 

havior of the z th system (Hii = 0), t is time, In analogy with [Z, 3] we state the 
problem of stabilizing interconnected systems in the following way. 

The problem. 
di, i, j = 1, . . ., 

Given the positive numbers hij, ti*f di and ei(hii := 0, ai < 
1)~ the collection of interconnected systems (1.2). the set 62 of 

continuous controls 
ui .-’ ui (2ir t)~ i -= 1 , , . ,1 

From Q select a subset of controls, on which the specified collection of systems is 

asymptotically stable and the transient responses satisfy the condition 

11 2i (t) 11 < &ir t > ti*, i = 1, . . ,l 

under any initial perturbations 

~i~~(O}~l~d~, ~=I,...,E 

and any matrices Hij satisfying the estimates 

0.3) 

0.4) 
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Ii Nij (51, . . ., xl, t) Xj 11 < hjj/l Xj 11 7 i, j ..= 1, . , 1 

Conditions (1.3), (I. 4), which we call the damping criterion of the transient respon- 

ses, have features in common with the problems of optimizing vector-valued functions 
[4-61 and with the problems considered in [3, ‘7, 81. Therefore, the solution being pro- 

posed for the problem posed is based on Liapunov functions satisfying estimates typical 
of quadratic forms [9] and essentially related to the notion of a vector-valued Liapunov 
function [lo-143, 

2. Solution of the probfsm, Let fix, . . ,, fbl be positive constants, 

7, (51, t),. * ‘, v, c%, 6) be Liapunov functions satisfying the estimates 

ci,s 11 xi 11” 4 Vi (Xi, t) < ciss ]I 2,//s @r, ci2 = const > 0, i = 1, . . . ) 2) (2.1) 

jfdVi/dzijJ2 < ci3‘Ti(xi, t) (cis -L const>O, i = 1,. . .,I) (2.2) 

in region (I. I), h, (x1, t), . . . , A, (51, t) be arbitrary smooth scalar functions, 

P, (% 0,. * - 9 PE bl, t) be arbitrary skew-symmetric matrices, yr* (t),. . ., yl* (t) 
be a particular solution of the equations 

yi* (0) = Ci2& i = 1, . . I , E (2.3) 

Theorem, The set of controls 

satisfies the transient response damping criterion if 

i?V, 
at G - PtVi (Xi, t) - (,2 7 “i> + $ (2 7 GiGi' 2) , i zz 1, . . . , l (2.5) 

the trivial solution of Eqs. (2.3) is asymptotically stable (yi* (I) + 0 as t -+ co) and 

Iii” (Q < C&i, t > ti*, i-I,..,,1 (2.6) 

To prove the theorem we consider the derivatives of the functions VI (a% t), + . ., 

v, 6% t), defined on the motions of systems (I. 2), c~s~ding to the controls (2.4). 

When the inequalities indicated are satisfied 

V,’ (zi, t) < A (Vi (xi, t)) 

A (V,) = - piVi + f: +- (ViVj)l/“, i-l,...,1 

j=I 

Consequently, for all t > 0 
vi &q(t), t) < gi (t)7 i=$,...,I (2.7) 

if Vi (xi(O), 0) = Et (0) and h (t) is a particular solution of the equations 

& = ArEi), i-=%,...,i (2.8) 

In the case being considered & (t) # 0, if & (0) # 0'; therefore, the change of vari- 
ables gi = yi2 reduces system (2.8) to the form (2.3). The trivial solution of the equa- 
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tions obtained is asymptotically stable by virtue of the theorem’s hypotheses. Conse- 
quently, the trivial solution of Eqs. (1. Z), (2.4) also is asymptotically stable. 

Further, under any initial perturbations (1.4) 

(Vi (Xi (t), t))ljl < yi* (t), t >n. i -= 2, . . . , 2 

and since here \I xi 11 < (Vi (xi, t))“l / Gil, for all t > 0 we have 

l\~i(t)jj\<&“(t) /cil, i=l,....Z 

and by virtue of condition (2.6) of the theorem inequalities (1.3) are fulfilled on all 
motions of systems (1.2). (2.4) stating in region (1,4), The theorem is proved. 

Let us now show that the construction of the vector-valued Liapunov function used to 
prove the theorem leads to solving the problem posed under constraints on the controls 
milder than the constraints obtained by the vector-valued Liapunov function proposed 
by Bailey [I]. To do this we consider inequalities (2. l), (2.2) and (2.5). When they are 
satisfied 

Vi’ (% t) < - &Vi @it t) + ci3 (Vi (Xi, t$” i hij // q //) i = 1, . ,) f 
Hence in accord with Cl] j=t 

Thus, for all t > 0 
7: (% (87 t) < zi (t), i = 1, . . ., 1 (2.9) 

if Vi(si (O), 0) = zt (0) and 2~‘ = A* (ai), i = 1,. . ., 1. But in the case being 
considered 

A (Vi) < -~V~+~~~“‘:‘(V,)?~“~A.(Vi), i-rl,...,~ 

Consequently, for all t > 0 
t L jzr “jl 

Ei(t)*<zi(t), i=2,...,1 

which proves the assertion made (see estimates (2.7) and (2,9)). 
We note that when h,j= 0, i, j = 1 , . . ., 1, according to the theorem, the set 

of controls (2.4) satisfy the transient response damping criterion if 

p&=+1+, i = 1,. . ., 1 
21 i 

The application of the estimates (2.9). however, yields in this case 

8, ~ot$rrni~~tio~ of tba propruler of tha oontrotr obtrinrd, 
The control set (2.4) is defined to within the arbitrary functions hr (51, t), . I ., & (xi, 

t) and matrices PI (x1, t), . . ., P, (xl, t). It is natural that when solving actual 
stabilization problems the arbitrariness in the choice of the functions and matrices named 
can be used in the most different ways. However, here we need to keep in mind that when 
the Ai (xi, t) < 0, the transient responses in systems (1.2) undoubtedly satisfy the spe- 
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cified performance criterion with ui ES 0 if they satisfy this performance criterion by 
virtue of the hypotheses of the theorem proved. 

Taking the following inequalities as satisfied 

ki (x1, 9 > 0 (3.1) 
we consider the controls 

[hi = - -$G; 2 (3.2) 
‘2 

and we assume that 

Controls (3.2) are, obviously, a special case of controls (2.4), Here, if (2.4) is the con- 

trol set ensuring the fulfillment of the inequalities 

in region (1. l), then (3.2) are controls guaranteeing the fulfillment of the inequalities 

indicated with the smallest value of the quantity z, = // u, ir -i- . . . + 1 ul 112 ateach 

point {x1, . . ., xl, t) of this region. By analogy with [3, 81 controls (3.2) are called 

constraint-optimal controls. 

Constraint-optimal controls possess important properq: they are the solution of the 
stabilization problem for the systems 

zi = Fi(% t) f Gif% ~~~~(~~, 8) + i H&i,. . .) 
(3.4) 

51, qqt i .:I,. . ., I 

for any continuous vector-valued functio~?q+ (nr, t), . . ., qt (u,, t), satisfying the 
inequalities 

(Ui, (pi (ZL;, t) ) >, (ui, ui), t>O, i =- 1,. . ., 1 (3‘ 5) 

In fact, when inequalities (3.5) are satisfied 

i, 2, ~~ -+ G,cp., ( - f$ Gi’ 2, t) ) + 2 = - &Vi (xi, q 4.. 
Y 

(‘~,G~~~(-~G~~,~)),--~(~~~, G,G,‘~)I=:--(iivi(.~~,t) 
I I 

i:-- l,.. _, t 

and the validity of the assertion made follows immediately from the theorem proved. 
Krasovskii and tetov have established the connection between Liapunov functions and 

optimal control problems. Of additional interest here is the fact that constraint-optimal 

controls are controls optimal also with respect to the vector-valued functional 

(3.6) 

In fact, in accordance with [ 151 the controls 

n,,..‘~=-?G,‘g, u.~~~-~G~‘~-~G~~, i+K,i;. f),,., I (3.7) 
k 
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impart the minimum of the kth functional in (3.6) if the trivial solution of Eqs.. (1. ‘2). 
(3.7) is asymptotically stable and the function S = s (~1, . . . , ~1, t) satisfies a par- 
tial differential equation. This equation can be satisfied by setting S = Vk (.rzkr t). 
Then 

(3.8) 

and since the trivial solution of Eqs. (1.2), (3.8) is asymptotically stable by virtue of the 
construction of controls (3.2). the validity of the assertion made follows directly from 

P51. 
The construction of constraint-optimal controls is related to the solving of the partial 

differential equations (3.3). However, controls (3.2) are also a solution of the problem 
nosed when the Liapunov functions satisfy inequalities (2.5). When the inequalities indi- 
cated and inequalities (3.1) are fulfilled, controls (3.2) are called quasioptimal controls. 
The properties of quasioptimal controls are analogous to the properties of constraint-opti- 
mal controls. Thus, on all motions of system (1.2), starting in region (1.4), they impart 
the minimum of the functionals 

When inequalities (3.5) are fulfilled, quasioptimal controls are a solution of the problem 
posed for systems (3,4). 

4, Example. Let the perturbed motion of interconnected systems be described by 
the differential equations r 

xi= A& $ B,cp, (Ui, t) i-2 Mij (Xl. 1 x1, t)zj 

j=1 

rank [I?,, AiBi, . , A~%,] -.: ni, i-=1,.,.,1 

where Ai and & are constant matrices satisfying the condition indicated, In this case, 
having set hi = const > 0, the theorem’s hypotheses can be satisfied by the functions 

v, = (11, rls,), . . -1 v, = @a, I-Pi) re 1) 

The solving of the problem posed now reduces to seeking matrices PI, . . ., f, satisfying 
the equations 

or the inequalities 
0 = --Biri - riAi - Ai’ri + 2h,l’iRiB,‘r, (4.2) 

Cl < --piTi - ridi - AiTi + 2h,I’$?$i’Ti, i=l,...,l 

to determining the smallest and largest eigenvalues of the matrices found, and to verifying 
the fulfillment of condition (2.6). 

When the condition indicated is fulfilled, the controls 

z&i = --hi&‘f..V I I* i = 1, . . ., E 

generated by (4.1) satisfy the transient response damping criterion under any variations 
of the vector-valued functions r++ (u,, t), . . ., 91 (zq, t), admissible by ineq~lities(3.5). 
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Let us now consider certain peculiarities of the solution of Eqs, (4.2) when A i, By are 
(n X n)- and (m X l)-matrices 

010 . . . 0 0 ” 

001 . . . 0 0 ’ 

.$= . . . . . . . . . , i-=2,.,.,1 
000 .*. 1 

B,= . . . , 

0 

000 . . . 0 1 

In the case being considered, when n = 2 Eqs. (4.2) can be satisfied by the matrices 

where h,, . . ., hi are arbitrary constants satisfying the inequalities indicated. For n = 3 
the matrices Ti are determined by the expressions 

pi5 2pi4 pi3 

ri = ” 

(2h. 
2pi* 543 342 , i--i,...,l 

‘L gi3 3&s “3; 

Hence, by induction, for any IL 

where, and this is essential, yijO are positive constants not dependent on pi,i = 1, . ., 1. 
We now assume that by applying various methods, the solution of Eqs. (4.2) can be 

obtained on a computer, Then, solving one of Eqs. (4.2) with fit = 1, hi I;- I and next 
substituting the found values of Yij ” into (4.3), we obtain the matrices f,, . . ., f’, cor- 
~s~Rding to any values of constants &, . . ., 01. 

The example considered shows quite intuitively the possibility of combining analytic 

and computer methods for constructing interconnected systems having a specified perfor- 

mance. Besides, in the case being considered the matrices I‘i can be found purely ana- 

lytically for any 12. 
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Plane-parallel and axisymmetric flows of a chemically active mixture in which 

only a single reaction takes place are considered on the assumption that the equi- 
librium and the frozen speeds of sound in the medium are nearly equal. The 

asymptotic system of equations which in the nonlinear theory of small perturba- 

tions is valid in the range of transonic speeds is used. An exact particular solu- 
tion of these equations is derived, which makes it possible to trace the process 
of shock wave onset and development, If the particle velocity is higher than the 

equilibrium but lower than the frozen speeds of sound, the shock waves are totally 
dispersed, as in the case of one-dimensional flows. Waves containing discontinu- 
ities with incomplete dispersion are generated, if the stream velocity exceeds 
the frozen speed of sound. 


